774 research outputs found

    From Conformation to interaction: techniques to explore the Hsp70/hsp90 network

    Get PDF
    Proteins participate in almost every cell physiological function, and to do so, they need to reach a state that allows its function by folding and/or exposing surfaces of interactions. Spontaneous folding in the cell is in general hindered by its crowded and viscous environment, which favors misfolding and nonspecific and deleterious self-interactions. To overcome this, cells have a system, in which Hsp70 and Hsp90 play a central role to aid protein folding and avoid misfolding. The topics of this review include the biophysical tools used for monitoring protein-ligand and protein-protein interactions and also some important results related to the study of molecular chaperones and heat shock proteins (Hsp), with a focus on the Hsp70/Hsp90 network. The biophysical tools and their use to probe the conformation and interaction of Hsp70 and Hsp90 are briefly reviewed168735753CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPES

    On the denaturation mechanisms of the ligand binding domain of thyroid hormone receptors

    Get PDF
    The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly α-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics simulations to investigate unfolding of the LBDs of thyroid hormone receptors (TRs). A molecular description of the denaturation mechanisms is obtained by molecular dynamics simulations of the TRα and TRβ LBDs in the absence and in the presence of the natural ligand Triac. The simulations show that the thermal unfolding of the LBD starts with the loss of native contacts and secondary structure elements, while the structure remains essentially compact, resembling a molten globule state. This differs from most protein denaturation simulations reported to date and suggests that the folding mechanism may start with the hydrophobic collapse of the TR LBDs. Our results reveal that the stabilities of the LBDs of the TRα and TRβ subtypes are affected to different degrees by the binding of the isoform selective ligand Triac and that ligand binding confers protection against thermal denaturation and unfolding in a subtype specific manner. Our simulations indicate two mechanisms by which the ligand stabilizes the LBD: (1) by enhancing the interactions between H8 and H11, and the interaction of the region between H1 and the Ω-loop with the core of the LBD, and (2) by shielding the hydrophobic H6 from hydration.CNPqFAPESP (06/00182-8, 06/06831-8

    Low-Resolution Molecular Models Reveal the Oligomeric State of the PPAR and the Conformational Organization of Its Domains in Solution

    Get PDF
    The peroxisome proliferator-activated receptors (PPARs) regulate genes involved in lipid and carbohydrate metabolism, and are targets of drugs approved for human use. Whereas the crystallographic structure of the complex of full length PPARγ and RXRα is known, structural alterations induced by heterodimer formation and DNA contacts are not well understood. Herein, we report a small-angle X-ray scattering analysis of the oligomeric state of hPPARγ alone and in the presence of retinoid X receptor (RXR). The results reveal that, in contrast with other studied nuclear receptors, which predominantly form dimers in solution, hPPARγ remains in the monomeric form by itself but forms heterodimers with hRXRα. The low-resolution models of hPPARγ/RXRα complexes predict significant changes in opening angle between heterodimerization partners (LBD) and extended and asymmetric shape of the dimer (LBD-DBD) as compared with X-ray structure of the full-length receptor bound to DNA. These differences between our SAXS models and the high-resolution crystallographic structure might suggest that there are different conformations of functional heterodimer complex in solution. Accordingly, hydrogen/deuterium exchange experiments reveal that the heterodimer binding to DNA promotes more compact and less solvent-accessible conformation of the receptor complex

    Net contribution and predictive ability of the CUN-BAE body fatness index in relation to cardiometabolic conditions

    Get PDF
    BACKGROUND: The CUN-BAE (Clínica Universidad de Navarra-Body adiposity estimator) index is an anthropometric index based on age, sex and body mass index (BMI) for a refined prediction of body fatness in adults. CUN-BAE may help detect metabolically unhealthy individuals with otherwise normal weight according to BMI or waist circumference (WC). The aim of this study was to evaluate whether CUN-BAE, independent of its components (BMI, age and sex), was associated with cardiometabolic conditions including arterial hypertension, diabetes mellitus and metabolic syndrome (MetS). METHODS: The ENRICA study was based on a cross-sectional sample of non-institutionalized men and women representative of the adult Spanish population. Body weight, height, and WC were measured in all participants. The residual of CUN-BAE (rCUN-BAE), i.e. the part of the index not explained by its components, was calculated. The associations of CUN-BAE, rCUN-BAE, BMI and WC with hypertension, diabetes and MetS were analysed by multivariate logistic regression, and the Akaike information criterion (AIC) was calculated. RESULTS: The sample included 12,122 individuals. rCUN-BAE was associated with hypertension (OR 1.14, 95% CI 1.07-1.21) and MetS (OR 1.48, 1.37-1.60), but not with diabetes (OR 1.05, 0.94-1.16). In subjects with a BMI?<?25 kg/m2, CUN-BAE was significantly associated with all three outcome variables. CUN-BAE was more strongly associated with the cardiometabolic conditions than BMI and WC and fit similar AICs. CONCLUSIONS: The CUN-BAE index for body fatness was positively associated with hypertension, diabetes and MetS in adults independent of BMI or WC. CUN-BAE may help to identify individuals with cardiometabolic conditions beyond BMI, but this needs to be confirmed in prospective settings.Funding: The ENRICA study was funded and financed by Sanofi-Aventis. Specific funding for this analysis came from the governmental Spain FIS PI12/1166 and PI11/01379 projects and from the “UAM Chair in Epidemiology and Control of Cardiovascular Risk”

    Structural Insights into Human Peroxisome Proliferator Activated Receptor Delta (PPAR-Delta) Selective Ligand Binding

    Get PDF
    Peroxisome proliferator activated receptors (PPARs δ, α and γ) are closely related transcription factors that exert distinct effects on fatty acid and glucose metabolism, cardiac disease, inflammatory response and other processes. Several groups developed PPAR subtype specific modulators to trigger desirable effects of particular PPARs without harmful side effects associated with activation of other subtypes. Presently, however, many compounds that bind to one of the PPARs cross-react with others and rational strategies to obtain highly selective PPAR modulators are far from clear. GW0742 is a synthetic ligand that binds PPARδ more than 300-fold more tightly than PPARα or PPARγ but the structural basis of PPARδ:GW0742 interactions and reasons for strong selectivity are not clear. Here we report the crystal structure of the PPARδ:GW0742 complex. Comparisons of the PPARδ:GW0742 complex with published structures of PPARs in complex with α and γ selective agonists and pan agonists suggests that two residues (Val312 and Ile328) in the buried hormone binding pocket play special roles in PPARδ selective binding and experimental and computational analysis of effects of mutations in these residues confirms this and suggests that bulky substituents that line the PPARα and γ ligand binding pockets as structural barriers for GW0742 binding. This analysis suggests general strategies for selective PPARδ ligand design

    A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing

    Get PDF
    Background: Cork oak (Quercus suber) is one of the rare trees with the ability to produce cork, a material widely used to make wine bottle stoppers, flooring and insulation materials, among many other uses. The molecular mechanisms of cork formation are still poorly understood, in great part due to the difficulty in studying a species with a long life-cycle and for which there is scarce molecular/genomic information. Cork oak forests are of great ecological importance and represent a major economic and social resource in Southern Europe and Northern Africa. However, global warming is threatening the cork oak forests by imposing thermal, hydric and many types of novel biotic stresses. Despite the economic and social value of the Q. suber species, few genomic resources have been developed, useful for biotechnological applications and improved forest management. Results: We generated in excess of 7 million sequence reads, by pyrosequencing 21 normalized cDNA libraries derived from multiple Q. suber tissues and organs, developmental stages and physiological conditions. We deployed a stringent sequence processing and assembly pipeline that resulted in the identification of ~159,000 unigenes. These were annotated according to their similarity to known plant genes, to known Interpro domains, GO classes and E.C. numbers. The phylogenetic extent of this ESTs set was investigated, and we found that cork oak revealed a significant new gene space that is not covered by other model species or EST sequencing projects. The raw data, as well as the full annotated assembly, are now available to the community in a dedicated web portal at http://www.corkoakdb.org. Conclusions: This genomic resource represents the first trancriptome study in a cork producing species. It can be explored to develop new tools and approaches to understand stress responses and developmental processes in forest trees, as well as the molecular cascades underlying cork differentiation and disease response.Peer Reviewe

    Protein Disulfide Isomerase Modulates the Activation of Thyroid Hormone Receptors

    Get PDF
    Thyroid hormone receptors (TRs) are responsible for mediating thyroid hormone (T3 and T4) actions at a cellular level. They belong to the nuclear receptor (NR) superfamily and execute their main functions inside the cell nuclei as hormone-regulated transcription factors. These receptors also exhibit so-called “non-classic” actions, for which other cellular proteins, apart from coregulators inside nuclei, regulate their activity. Aiming to find alternative pathways of TR modulation, we searched for interacting proteins and found that PDIA1 interacts with TRβ in a yeast two-hybrid screening assay. The functional implications of PDIA1—TR interactions are still unclear; however, our co-immunoprecipitation (co-IP) and fluorescence assay results showed that PDI was able to bind both TR isoforms in vitro. Moreover, T3 appears to have no important role in these interactions in cellular assays, where PDIA1 was able to regulate transcription of TRα and TRβ-mediated genes in different ways depending on the promoter region and on the TR isoform involved. Although PDIA1 appears to act as a coregulator, it binds to a TR surface that does not interfere with coactivator binding. However, the TR:PDIA1 complex affinity and activation are different depending on the TR isoform. Such differences may reflect the structural organization of the PDIA1:TR complex, as shown by models depicting an interaction interface with exposed cysteines from both proteins, suggesting that PDIA1 might modulate TR by its thiol reductase/isomerase activity
    corecore